

Using Beer Sensory for Recipe Development

Tommy Yancone – Product Development Manager

Agenda

Our Systems

.and how you can apply them

Factors Affecting Design

Dosing rates, times, and more

Tasting

Compare beers in real time

Our Brewery

5 hL brewhouse

8 – 1hL fermenters

Lab Scale Equipment

YCH Sensory Program

<u>Hops</u>

- Intake (Harvest Panel) QDA
- Finished Goods (QC Panel) CATA
- Research Projects QDA

Beer

- Roundtable Qualitative
- Research Projects QDA + CATA
- Discrimination
- Preference

Use Sensory to Fit Your Needs

- Descriptive analysis to describe and track over time
 - Does this new hop make tasty beer?
 - Has our process drifted and caused our brand profile to change?
- Discrimination testing to assess ingredient and process changes
 - Does this new hop change our beer's flavor?
- Preference Testing to determine which beer is better
 - Is this new recipe better or worse than the previous one?

Descriptive Analysis

- Develop a lexicon
 - Everyone needs to speak the same language
- Train a panel
 - Give all panelists the same points of reference
- Record results
 - Make it fit your brewery
- ASBC Resources

Descriptive Analysis

QDA

Attributes and their intensities

CATA

Attributes only

True to Brand

Specific lexicon for each brand

Discrimination Testing (Tetrad)

- Tetrads are very simple!
- Use employees or <u>customers</u> (if that's allowed)
- Use these tests to confirm a change to the beer won't be detected by your consumers

Discrimination Testing (Tetrad)

- Pour 2 pairs of matching samples and see if tasters can re-pair them
- Paper ballots and disposable cups work best
- Use a label gun if you want to be efficient

Preference Testing

- Great opportunity to interact with customers in the tap room
- Simple testing which sample do you like most?
- Build a 'panel' of committed tasters

Hop Products vs Beer Recipes

Similar Processes for Different Goals

Product Development

- Understand how the product really works
- Conversion from T-90
- Optimal dosing location
- Optimal usage rate

Recipe Design

- Understand how the product affects my beer
- How much should I use?
- Which variety should I use?
- Where should I use it?

T-90 Conversion Rate

Our Process

- Dose beers with various ratios of new products
- Assess via descriptive panel and / or tetrad tests
- Use practical data as a starting point
 - Oil or alpha concentration
 - Production yields
- Get feedback from brewers

To Emulsify or Not?

Product Considerations

- Non-emulsified products are more consistent the math is simple
- <u>Emulsified</u> products increase aroma more effectively, but also change the aromatic profile, so brand-specific testing needs to be done

Lager 2 g/L T-90 Dry Hop

Control No Dose

Emulsified Low 0.25 g/L 0.005 g/L Oil Non-emulsified 0.01 g/L 0.01 g/L Oil

Emulsified High 0.5 g/L 0.01 g/L Oil IPA 10 g/L T-90 Dry Hop

ControlNo Dose

Emulsified Low 0.16 g/L 0.0032 a/L Oil **Non-emulsified** 0.0125 g/L 0.0125 g/L Oil

Emulsified High 0.33 g/L 0.0066 g/L Oil

Dosage Timing

- Where will this product work best for your beer?
- Split batches provide the most information

HyperBoost works better when dosed

HyperBoost works better when dosed earlier

Post crash dosing led to to terpenederived aromas

HyperBoost at Pitch (Day 0) (n=7)
HyperBoost Post-Ferm (Day 6) (n=7)
HyperBoost Post-Crash (In Keg) (n=7)

HyperBoost works better when dosed

earlier

Active ferm dosing led to the most positive flavors

HyperBoost at Pitch (Day 0) (n=7)
HyperBoost Post-Ferm (Day 6) (n=7)
HyperBoost Post-Crash (In Keg) (n=7)

HyperBoost works better when dosed earlier

HyperBoost works better when dosed earlier

How Much Should You Use?

HyperBoost Preference Testing

- Same wort, different levels of HyperBoost in the dry hop
- What differences exist between beers?
- Which do you prefer?

Brewers have been split, preferring both 100% T-90 beers, and beers utilizing HyperBoost

Brewers have been split, preferring both 100% T-90 beers, and beers utilizing HyperBoost

It's time to try it for yourselves!

Which beer do you like the most?

248 –T-90 Control 357 –25% HyperBoost @ Pitch 679 –50% HyperBoost @ Pitch

Krush – T-90 / HyperBoost – 50% Talus – T-90 – 30% Mosaic – T-90 – 20%

